Future Research Pharma

Practical insights into the use of AI in industry

Dr. Niklas Rach

Tensor AI Solutions GmbH

Tensor Al Solutions GmbH

TENSOR SOLUTIONS

EXPLAINABLE INTELLIGENCE

We create explainable AI ...

... to control

... to discover

... to improve

... to justify

Tensor Al Solutions GmbH

2021

Invented for life

State of Al

34 Mio.

Number of AI generated images (daily, worldwide)

70%Estimated annual increase of GenAl power demand

78% of companies surveyed use AI in at least one business function

5% of the US power is consumed by data centers

Healthcare AI market

has doubled since 2023

https://www.morganstanley.com/ideas/ai-energy-demand-infrastructure (last visited 2025-04-30)

https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai (last visited 2025-04-30)

https://www.forbes.com/sites/bernardmarr/2025/03/10/15-mind-blowing-ai-statistics-everyone-must-know-about-now/ (last visited 2025-04-30)

EU: Between GPT and Regulations

Al Boom

- Launch of ChatGPT opened the door for a multitude of Al applications
- High expectations of end users and industry
- Unprecedented opportunities and challenges

Regulations

- Commitment to a responsible and reliable use of technology
- Risk-oriented perspective
- Rapid development complicates legislations

Théâtre D'opéra Spatial: Image by Jason M. Allen - Colorado State Fair, Public Domain, https://commons.wikimedia.org/w/index.php?curid=122602647 (last visited 2025-04-30)

EU: Between GPT and Regulations

Al Boom

- Launch of ChatGPT opened the door for a multitude of Al applications
- High expectations of end users and industry
- Unprecedented opportunities and challenges

Regulations

- Commitment to a responsible and reliable use of technology
- Risk-oriented perspective
- Rapid development complicates legislations

Théâtre D'opéra Spatial: Image by Jason M. Allen - Colorado State Fair, Public Domain, https://commons.wikimedia.org/w/index.php?curid=122602647 (last visited 2025-04-30)

Perspective in Pharma

Expected annual value of GenAI (in billion)

"Gen AI models account for only about **15**percent of a typical project effort [...].

Most of the work involves adapting models to a **company's internal knowledge base** and **use cases.**

That is particularly true in the pharmaceutical industry, given the complexity of its data and the uniqueness of its regulations and technology."

https://www.mckinsey.com/industries/life-sciences/our-insights/generative-ai-in-the-pharmaceutical-industry-moving-from-hype-to-reality#/ (last visited 2025-04-30)

EU: Application Areas

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Use of artificial intelligence in enterprises (last visited 2025-04-30)

Use Case: Quality Control

- Quality depends on different process and material parameters
- Classical QC: reactive, time-delayed and often manual
- Established approach: Automated visual inspection (image processing)
 - Reasons for quality deviations frequently unknown
 - Especially **complex patterns** often remain undetected
- > ML offers unique insights if models can be explained
- Similar requirements in multiple use cases, e.g.
 - Steel production
 - Chemical coating
 - Real-time release testing

Example: Real-time Release Testing

"The ability to evaluate and ensure the quality of in-process and/or final product based on process data, which typically include a valid combination of measured material attributes and process controls."

- ICH, 2009. Q8(R2) Pharmaceutical Development (step 5)

- Approach: data-based surrogate models to measure dissolution
- Typical methods are multi-linear regression (MLR) and partial least square (PLS) regression
- Complex models like neural networks were studied but frequently lack transparency (black box)
- Often manual selection and comparison of input data

Galata, Dorián László, et al. "Real-time release testing of dissolution based on surrogate models developed by machine learning algorithms using NIR spectra, compression force and particle size distribution as input data." *International journal of pharmaceutics* 597 (2021): 120338.

Explainable Al

"Machine learning systems automatically learn programs from data"

Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

- Usual trade-off: model complexity vs. transparency
- > Explainable AI (XAI) aims at making the learned patterns visible/understandable
- Explanation scopes:
 - Local explainability (individual predictions)
 - Global explainability (full model)
- Examples: Local explainability
 - Sensitivity maps
 - SHAP values (individual feature contribution)

Prediction: Canyon

Image source: [1]

Quality prediction: 92%

Exemplary data and visualization

- 1. Selvaraju, Ramprasaath R., et al. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization." arXiv preprint arXiv:1610.02391 (2016).
- 2. Topalian, Romain, et al. "Safe-by-Design Strategies for Intranasal Drug Delivery Systems: Machine and Deep Learning Solutions to Differentiate Epithelial Tissues via Attenuated Total Reflection Fourier Transform Infrared Spectroscopy." *ACS Pharmacology & Translational Science* 8.3 (2025): 762-773.

Tensor Network Technology

Control information

- Traceability of learned patterns
- Measurability of relevant data for Al decisions
- Integration of expert knowledge or regulatory constraints

Origin

- Used to simulate many-body quantum systems
- Information theory-based reduction of dimensionality

Improve efficiency

- Reduction of data to the most relevant for decision-making
- Compression of AI models after training for an optimal balance between accuracy and speed

Use Cases

- Object detection in real-time
- Robust processing of satellite data
- Particle recognition from highenergy physics data

Felser, Timo, et al. "Quantum-inspired machine learning on high-energy physics data." npj Quantum Information 7.1 (2021): 111.

How transparent is enough?

- Limited data and high (regulatory) standards
 - E.g. GxP (GAMP, GMP, GCP, etc.)
- Clarify similar XAI obligations for different use cases
 - What information needs to be accessible?
 - How is explainability assessed?
 - Which decisions require a human in the loop?
- > Standardize explainability to enable reliable and assessable models
- > Synchronize regulations and XAI standards across industries

Thank you for your attention!

EXPLAINABLE INTELLIGENCE

Contact details:

Dr. Niklas Rach niklas.rach@tensor-solutions.com

Tensor Al Solutions GmbH www.tensor-solutions.com

SCAN ME